- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Nyairo, Elijah (2)
-
Baganizi, Dieudonné (1)
-
Baganizi, Dieudonné R. (1)
-
Dennis, Vida (1)
-
Dennis, Vida A. (1)
-
Dixit, Saurabh (1)
-
Duncan, Skyla (1)
-
Duncan, Skyla A. (1)
-
Martin, David (1)
-
Sahu, Rajnish (1)
-
Singh, Shree (1)
-
Singh, Shree R. (1)
-
Villinger, Francois (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Inflammation, as induced by the presence of cytokines and chemokines, is an integral part of chlamydial infections. The anti-inflammatory cytokine, interleukin (IL)-10, has been reported to efficiently suppress the secretion of inflammatory cytokines triggered by Chlamydia in mouse macrophages. Though IL-10 is employed in clinical applications, its therapeutic usage is limited due to its short half-life. Here, we document the successful encapsulation of IL-10 within the biodegradable polymeric nanoparticles of PLA-PEG (Poly (lactic acid)-Poly (ethylene glycol), to prolong its half-life. Our results show the encapsulated-IL-10 size (~238 nm), zeta potential (−14.2 mV), polydispersity index (0.256), encapsulation efficiency (~77%), and a prolonged slow release pattern up to 60 days. Temperature stability of encapsulated-IL-10 was favorable, demonstrating a heat capacity of up to 89 °C as shown by differential scanning calorimetry analysis. Encapsulated-IL-10 modulated the release of IL-6 and IL-12p40 in stimulated macrophages in a time- and concentration-dependent fashion, and differentially induced SOCS1 and SOCS3 as induced by chlamydial stimulants in macrophages. Our finding offers the tremendous potential for encapsulated-IL-10 not only for chlamydial inflammatory diseases but also biomedical therapeutic applications.more » « less
-
Baganizi, Dieudonné; Nyairo, Elijah; Duncan, Skyla; Singh, Shree; Dennis, Vida (, Nanomaterials)Interleukin-10 (IL-10) is a key anti-inflammatory and immunosuppressive cytokine and therefore represents a potential therapeutic agent especially in inflammatory diseases. However, despite its proven therapeutic efficacy, its short half-life and proteolytic degradation in vivo combined with its low storage stability have limited its therapeutic use. Strategies have been developed to overcome most of these shortcomings, including in particular bioconjugation with stabilizing agents such as polyethylene glycol (PEG) and poly (vinylpyrolidone) (PVP), but so far these have had limited success. In this paper, we present an alternative method consisting of bioconjugating IL-10 to PVP-coated silver nanoparticles (Ag-PVPs) in order to achieve its storage stability by preventing denaturation and to improve its anti-inflammatory efficacy. Silver nanoparticles capped with a carboxylated PVP were produced and further covalently conjugated with IL-10 protein by carbodiimide crosslinker chemistry. The IL-10 conjugated Ag-PVPs exhibited increased stability and anti-inflammatory effectiveness in vitro. This study therefore provides a novel approach to bioconjugating PVP-coated silver nanoparticles with therapeutic proteins, which could be useful in drug delivery and anti-inflammatory therapies.more » « less
An official website of the United States government
